Bernstein–Sato polynomials for maximal minors and sub-maximal Pfaffians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of Maximal Minors

We continue the study of the Newton polytope Pm,n of the product of all maximal minors of an m x n-matrix of indeterminates. The vertices of Pm,n are encoded by coherent matching fields A = (A z) , where z runs over all m-element subsets of columns, and each Az is a bijection z —> [m]. We show that coherent matching fields satisfy some axioms analogous to the basis exchange axiom in the matroid...

متن کامل

Conormal Geometry of Maximal Minors

Let A be a Noetherian local domain, N be a finitely generated torsion-free module, and M a proper submodule that is generically equal to N . Let A[N ] be an arbitrary graded overdomain of A generated as an A-algebra by N placed in degree 1. Let A[M ] be the subalgebra generated by M . Set C := Proj(A[M ]) and r := dimC. Form the (closed) subset W of Spec(A) of primes p where A[N ]p is not a fin...

متن کامل

Maximal and Linearly Inextensible Polynomials

Let S(n, 0) be the set of monic complex polynomials of degree n ≥ 2 having all their zeros in the closed unit disk and vanishing at 0. For p ∈ S(n, 0) denote by |p|0 the distance from the origin to the zero set of p. We determine all 0-maximal polynomials of degree n, that is, all polynomials p ∈ S(n, 0) such that |p|0 ≥ |q|0 for any q ∈ S(n, 0). Using a second order variational method we then ...

متن کامل

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

On Minors of Maximal Determinant Matrices

By an old result of Cohn (1965), a Hadamard matrix of order n has no proper Hadamard submatrix of order m > n/2. We generalize this result to maximal determinant submatrices of Hadamard matrices, and show that an interval of length ∼ n/2 is excluded from the allowable orders. We make a conjecture regarding a lower bound for sums of squares of minors of maximal determinant matrices, and give evi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2017

ISSN: 0001-8708

DOI: 10.1016/j.aim.2016.11.011